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A new neural network based on particle swarm optimization was developed to estimate lower and upper
flammability limit percent in air of organic compounds using their molecular structures. The capability
of this hybrid method was tested using 328 compounds in a correlated set and 90 compounds in a
predicted set. The results show that the proposed method can estimate the flammability limits of organic
compounds with low deviations and can be used with acceptable accuracy in thermal engineering.
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. Introduction

The thermal properties used to determine the potential for fire
nd explosion hazards of industrial substances are the flammability
imits. To safe handling, transportation, and storage of flammable
ompounds, information about flammability of these substances is
eeded [1]. The most important properties used to his purpose are
he lower flammability limit percent (LFLP) and the upper flamma-
ility limit percent (UFLP). Flammability limits provide range of
uel concentration (normally in percentage volume), within which

gaseous mixture can ignite and burn [2]. The lower flammable
imit is the smallest percent of the gas in air which can ignite when
xposed to the ignition temperature. The upper flammable limit is
he point above which the mixture is too rich in fuel to ignite. The
ange between these two limits is the flammable or explosive range
3].

Knowledge of LFLP and UFLP of several substances is essential
n many thermal and chemical engineering operations. A precise
etermination of flammability limits in air requires the use of
tandard apparatus and conditions. When the flammability limits

annot be determined experimentally, other methods of estimation
re necessary. Jones [4] proposed equations frequently used:

FLP = 0.55Cest (1)

∗ Corresponding author. Tel.: +56 51 204128; fax: +56 51 206658.
E-mail address: jlazzus@dfuls.cl.

040-6031/$ – see front matter © 2010 Elsevier B.V. All rights reserved.
oi:10.1016/j.tca.2010.09.018
UFLP = 3.50Cest (2)

where Cest is the stoichiometric concentration of the flammable
product for complete combustion in air. Another empirical relation
used for the prediction of LFLP in air was proposed by Spakowski
[5]:

LFLP = − 4354
�Hcomb

(3)

where �Hcomb is the heat of combustion in kJ mol−1. Hristova
et al [6] developed a correlation of flammability limits with
normal boiling point and molecular mass. Recently, quantitative
structure–property relationship (QSPR) methods were presented
by several authors for the prediction of LFLP [7–10] and UFLP
[7,11,12] of pure compounds.

There are many methods for the prediction of thermal prop-
erties in the literature [1]. Artificial neural networks (ANN) are
accepted as the most powerful non-linear technique in several
applications [13]. The neural network modeling has been applied
to most physicochemical properties, for which suitable experimen-
tal data can be found in the literature. Alternatives of predictive
methods have recently appeared. The group contribution method
(GCM) provides a convenient tool to predict physicochemical prop-

erties of substances from molecular structural information [14].
The mentioned GCM use linear and non-linear regression tech-
niques to represent the relations among the variables of a given
system [15]. The relationship between the physical and thermo-
dynamic properties is highly non-linear, and consequently an ANN
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an be a suitable alternative to model the underlying thermophysic
roperties [13–15].

In this work, the flammability limits (LFLP and UFLP) in air
f organic compounds have been estimated using a simple GCM
mplemented in an ANN replacing standard back-propagation with
article swarm optimization (PSO) [16], that is one of the most
ecently developed evolutionary algorithms.

. Neural network and particle swarm optimization

A feed-forward neural network programmed with the software
atLab [17], was used to represent non-linear relationships among

ariables [13–15]. This ANN program considers the reading of the
ecessary data organized in an Excel file. To distinguish between
he different physical and chemical properties of the substances
sed, and so the network can discriminate and learn in optimum
orm, properties derived from the molecular structure were consid-
red. The input layer contains one neuron (node) for each variable.
he output layer has one node generating the scaled estimated
alue of the flammability limits. The ANN was trained with particle
warm optimization [14].

PSO is a population-based optimization tool, where the system is
nitialized with a population of random particles and the algorithm
earches for optima by updating generations [15]. In each iteration,
he velocity for each particle is calculated according to the following
ormula [16]:

p
i
(t + 1) = ωvp

i
(t) + c1r1( p

i
(t) − xp

i
(t)) + c2r2( g(t) − xp

i
(t)) (4)

here t is the current step number, ω is the inertia weight, c1 and
2 are the acceleration constants, and r1, r2 are element from two
andon sequences in the range (0,1). xp

i
(t) is the current position

f the particle,  p
i

is the best one of the solutions that this parti-
le has reached, and  g is the best solutions that all the particles
ave reached. In general, the value of each component in v can
e clamped to the range (−vmax, vmax) control excessive roaming
f particles outside the search space [14,15]. After calculating the
elocity, the new position of every particle is:

p(t + 1) = xp(t) + vp(t + 1) (5)

hen x and v denote a particle position and its corresponding veloc-
ty in a search space, respectively.

The total steps to calculate the output parameter, using the input
arameters, were as follows [13]:

The data were normalized using the following equation:

i = (Pi − Pmin
i )

2

Pmax
i

− Pmin
i

− 1 (6)

here Pi is the input variables i, Pmin
i

and Pmax
i

are the smallest and
argest value of the data. Next, the net inputs (N) are calculated for
he hidden neurons coming from the inputs neurons. For a hidden
euron:

h
j =

n∑
i

whijpi + bhj (7)

here pi is the vector of the inputs of the training, j is the hidden
euron, wij is the weight of the connection among the input neurons
ith the hidden layer, and the term bj corresponds to the bias of the
euron j of the hidden layer, reached in its activation. Starting from
hese inputs, the outputs (y) of the hidden neurons are calculated,

sing a transfer function fh associated with the neurons of this layer.

h
j = f hj

(
n∑
i

whijpi + bhj

)
(8)
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To minimize the error, the transfer function f it should be differ-
entiable. In the ANN, the hyperbolic tangent function (tansig) was
used as:

f (Njk) = eNjk − e−Njk
eNjk + e−Njk (9)

All the neurons of the ANN have an associated activation value for
a give input pattern, the algorithm continues finding the error that
is presented for each neuron, except those of the input layer. After
finding the output values, the weights of all layers of the network
are actualized by PSO, using Eqs. (4) and (5) [14].

The PSO algorithm is very different then any of the traditional
methods of training [15]. Each neuron contains a position and veloc-
ity. The position corresponds to the weight of a neuron. The velocity
is used to update the weight. The velocity is used to control how
much the position is updated. On each pass through a data set, PSO
compares each weight’s fitness. The network with the highest fit-
ness is considered the global best. The other weights are updated
based on the global best network rather than on their personal error
or fitness [14–16]. In this study, network fitness was determined to
be the mean square of errors for the entire training set:

Fitness =
∑

(Recorded Value − Network Predicted Value)
2

(10)

This process repeats for the total number of patterns to training, for
a successful process the objective of the algorithm is to modernize
all the weights minimizing the total mean squared error:

E2 = 1
2

∑
(Fitness)2 (11)

Fig. 1 presents a block diagram of the program developed and writ-
ten in MatLab M-file [17].

3. Database used and training

A heterogeneous set of compounds: aromatic and aliphatic
hydrocarbons, halogens, polychlorinated biphenyls, mercaptans,
sulfides, anilines, pyridines, alcohols, carboxylic acids, aldehydes,
amines, ketones, and esters, were included. A total of 328 sub-
stances were used to train the network and then values of UFLP
and LFLP of 90 substances not used in the training process, were
predicted (the total set of substances is available as supplementary
data). To distinguish between the different substances considered
in this study, so the net can discriminate and learn in optimum
form, the properties used cover wide ranges: 0.2–15.7 (vol% in air)
for LFLP, and 1.8–60.0 (vol% in air) for UFLP. Molecular mass M (size),
dipole moment � (polarity), and the structure of the molecules
represented by the number of well defined groups forming the
molecule, were provided as input variables. Molecular mass and
dipole moment were chosen to characterize the different molecules
[13–15]. In addition, the substances included in the study have
very different physical and chemical characteristics. Low molec-
ular weight substances such as ethylene (M = 28) to high molecular
weight substances such as hexatriacontane (M = 506); or non-polar
substances (�= 0) such as benzene, to highly polar substances such
as dinitrobenzene (�= 6.3). Thus, the problem is not straightfor-
ward and probably is one of the reasons why the flammability
limits have not been treated as proposed in this work. Note that,
all the properties of interest (M,�, LFLP, UFLP) were taken from the
DIPPR database [18]. Fig. 2 shows a general picture of the range of
flammability limits in air and substances considered in this study.

This work used a leave-20%-out cross-validation method to

estimate the predictive capabilities of the model. Training and pre-
diction sets were selected randomly, with the consideration that
in the group contribution methods, the molecules are decomposed
into fragments and all fragments that are present with adequate
frequency in the training database. The structure of the molecules
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Reading of the necessary data: 

UFLP and LFLP for each substance and the input variables

(M, μ, and Structural Groups) 

↓↓

Normalization of data and transformation 

↓↓

Definition of the net architecture  

(number of hidden layers and neurons) 

↓↓

Build Neural Network Model: training and 

prediction

• Feedforward Neural Network 

• Transfer function: tansig
• Algorithm: Particle Swarm Optimization (PSO) 

↓↓

Optimum weights and bias for correlation and validation 

↓↓

Reading new data (M, μ, Groups) of new substances 

↓↓

Normalization of the validation data 

↓↓

Prediction of UFLP and LFLP  for the new substances 

↓↓

String of the predicted data for analysis 

Fig. 1. Flow diagram for the ANN + PSO program developed for this work.
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Fig. 2. Flammability limits as a function of molecular mass for all the substances
used in this study, and taken from Ref. [14]: LFLP (+) and UFLP (×).

Table 1
Structural groups used in the proposed GCM + ANN + PSO model.

Parameter No. occurrence

No. Group Max. value Training set Perdiction
set

Total set

1 M 506.98 328 90 418
2 � 6.30 261 74 335
3 –CH3 8 226 60 286
4 –CH2– 34 173 43 216
5 >CH– 6 37 1 38
6 >C< 2 14 3 17
7 CH2 2 28 4 32
8 CH– 2 26 5 31
9 C< 1 12 1 13

10 C 1 3 0 3
11 (CH 1 2 0 2
12 (C– 2 2 0 2
13 –OH 5 29 8 37
14 –O– 2 13 0 13
15 >C O 2 13 5 18
16 –CHO 2 28 3 31
17 –COOH 2 28 7 35
18 –COO– 3 26 6 32
19 HCOO– 1 3 3 6
20 O 1 2 0 2
21 –NH2 2 14 5 19
22 –NH– 2 11 3 14
23 >N– 1 5 1 6
24 –CN 2 10 3 13
25 –NO2 2 9 5 14
26 –F 2 2 0 2
27 –Cl 3 11 5 16
28 –Br 2 7 1 8
29 –SH 1 12 1 13
30 –S– 2 5 3 8
31 –CH2–(ring) 10 27 5 32
32 >CH–(ring) 6 12 1 13
33 CH–(ring) 20 120 48 168
34 >C<(ring) 2 6 0 6
35 C<(ring) 6 117 43 160
36 –O–(ring) 1 8 4 12
37 –OH(ring) 6 18 11 29
38 >C O(ring) 2 8 1 9
39 –NH–(ring) 1 3 3 6

40 >N–(ring) 1 2 1 3
41 N–(ring) 1 12 1 13
42 –S–(ring) 1 2 2 4

used, was represented by the number of well-defined groups form-
ing the molecules. The value associated to the structural group was
defined as following: 0, when the group does not appear in the
substance, and n, when the group appears n-times in the substance
[13,15]. For instance, for ethyl vanillin (C9H10O3, CASN: 121-32-
4), the property data are M = 166.2 kg kmol−1, �= 4.2 debyes, and
the structure of the molecule: [–CH3] = 1, [–CH2–] = 1, [–O–] = 1,
[–CHO] = 1, [ CH–(ring)] = 3, [ C<(ring)] = 3, and [–OH(ring)] = 1.
Table 1 shows the 42 groups used as entrance variables.

Several network architectures were tested to select the most
accurate scheme. The most basic architecture normally used for this
type of application involves a neural network consisting of three
layers [13]. The number of hidden neurons needs to be sufficient
to ensure that the information contained in the data utilized for
training the network is adequately represented. There is no specific
approach to determine the number of neurons of the hidden layer,
many alternative combinations are possible. The optimum number
of neurons was determined by adding neurons in systematic form
and evaluating the average absolute deviations of the sets during

the learning process [14,16]. Fig. 3 shows the average absolute rel-
ative deviation found in correlating the flammability limits in air
of all compounds as a function of the number of neurons in the
hidden layer. The network that gave the lowest deviation during
training was one with 42 parameters in the input layer, 6 neurons
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Table 2
Substances used in the prediction set, and deviations obtained using the GCM + ANN + PSO method.

Prediction set no. LFLP (vol% in air) UFLP (vol% in air)

Formula CASN Substance exp calc �% exp calc �%

1 CH3NO2 75-52-5 Nitromethane 7.3 7.1 2.2 22.2 22.3 0.6
2 CH4S 74-93-1 Methyl mercaptan 3.9 3.9 0.4 22.0 22.7 3.0
3 C2H4O2 107-31-3 Methyl formate 5.9 5.4 9.2 20.0 19.8 1.0
4 C3H3N 107-13-1 Acrylonitrile 2.4 2.5 3.9 17.3 18.5 6.5
5 C3H4O 107-02-8 Acrolein 2.8 2.6 8.2 31.0 31.4 1.1
6 C3H5N 107-12-0 Propionitrile 3.1 2.6 16.3 14.0 12.7 9.0
7 C3H5NO 79-06-1 Acrylamide 2.7 2.7 0.4 20.6 20.4 1.0
8 C3H6 75-19-4 Cyclopropane 2.4 2.3 3.3 10.4 11.3 9.0
9 C3H6O 75-56-9 1,2-Propylene oxide 1.9 1.9 2.2 37.0 36.8 0.6
10 C3H6S 287-27-4 Trimethylene sulfide 2.0 1.9 2.6 15.9 14.0 12.0
11 C3H8S 624-89-5 Methyl ethyl sulfide 1.8 1.7 5.8 13.9 14.0 0.6
12 C4H4Cl2 106-46-7 p-Dichlorobenzene 1.8 1.7 3.7 7.8 7.7 1.8
13 C4H4S 110-02-1 Thiophene 1.6 1.6 1.1 14.9 14.2 4.7
14 C4H6O 78-85-3 Methacrolein 2.1 1.9 8.4 14.6 14.0 3.8
15 C4H7NO 75-86-5 Acetone cyanohydrin 2.2 1.8 19.7 12.0 11.6 3.2
16 C4H8O 78-93-3 Methyl ethyl ketone 1.8 1.5 14.6 10.0 10.8 7.9
17 C4H8OS 3268-49-3 3-Methylmercapto propanal 1.6 1.7 9.2 27.5 26.0 5.3
18 C4H9N 123-75-1 Pyrrolidine 2.4 2.1 12.2 12.0 14.1 17.6
19 C4H9NO 110-91-8 Morpholine 1.8 1.7 4.5 10.8 10.4 3.6
20 C4H10S 3877-15-4 Methyl n-propyl sulfide 1.4 1.3 6.6 11.5 11.5 0.2
21 C4H11N 75-64-9 tert-Butylamine 1.7 1.4 17.3 8.9 9.3 4.4
22 C4H11NO2 111-42-2 Diethanolamine 1.8 1.9 4.1 13.4 12.2 9.3
23 C5H5N 110-86-1 Pyridine 1.8 1.6 12.9 12.4 9.8 21.0
24 C5H7N 96-54-8 N-Methylpyrrole 1.6 1.7 5.9 14.0 15.4 9.7
25 C5H10O2 542-55-2 Isobutyl formate 1.7 1.6 8.3 8.0 8.7 8.7
26 C5H10O2 105-37-3 Ethyl propionate 1.9 1.6 16.0 11.0 9.6 12.4
27 C5H10O2 592-84-7 n-Butyl formate 1.7 1.5 9.7 8.0 10.2 27.8
28 C5H11N 110-89-4 Piperidine 1.4 1.7 20.7 10.0 11.2 12.2
29 C6H3Cl3 120-82-1 1,2,4-Trichlorobenzene 2.5 2.3 7.7 6.6 7.5 13.2
30 C6H3Cl3 108-70-3 1,3,5-Trichlorobenzene 2.1 2.3 9.5 7.5 8.5 13.1
31 C6H3ClN2O4 97-00-7 1-Chloro-2,4-dinitrobenzene 2.0 2.4 20.2 22.0 19.8 10.1
32 C6H5Br 108-86-1 Bromobenzene 1.5 1.3 11.6 9.1 8.3 9.0
33 C6H5Cl 108-90-7 Monochlorobenzene 1.3 1.1 13.0 7.1 8.8 24.2
34 C6H6 71-43-2 Benzene 1.2 1.2 0.1 8.0 7.9 1.5
35 C6H6N2O2 88-74-4 o-Nitroaniline 1.5 1.5 2.9 9.8 10.4 5.9
36 C6H6N2O2 99-09-2 m-Nitroaniline 1.7 1.6 6.8 9.8 10.6 7.7
37 C6H6N2O2 100-01-6 p-Nitroaniline 1.5 1.6 9.5 9.8 10.8 10.2
38 C6H6O 108-95-2 Phenol 1.5 1.3 10.2 9.1 8.5 6.3
39 C6H6O2 120-80-9 1,2-Dihydroxybenzene 1.6 1.6 2.6 9.8 9.3 5.6
40 C6H10O4 124-04-9 Adipic acid 1.6 1.6 2.8 9.6 10.0 3.7
41 C6H12O2 142-62-1 Caproic acid 1.3 1.3 0.7 8.2 8.5 3.7
42 C7H8O 108-39-4 m-Cresol 1.1 1.2 9.7 7.6 7.8 2.7
43 C7H8O 106-44-5 p-Cresol 1.1 1.2 9.8 7.6 7.8 2.7
44 C7H8O 95-48-7 o-Cresol 1.4 1.2 13.7 7.6 7.8 2.8
45 C8H4O3 85-44-9 Phthalic anhydride 1.7 1.6 7.3 10.5 9.8 7.1
46 C8H8O 98-86-2 Acetophenone 1.1 1.0 12.2 6.7 7.6 12.9
47 C8H9NO 103-84-4 Acetanilide 1.1 0.9 15.0 6.9 6.9 0.0
48 C8H10 106-42-3 p-Xylene 1.1 1.0 9.0 7.0 6.7 4.5
49 C8H10 95-47-6 o-Xylene 0.9 1.0 10.7 6.7 6.7 0.7
50 C8H10 108-38-3 m-Xylene 1.1 1.0 9.2 7.0 6.7 4.7
51 C8H10O 105-67-9 2,4-Dimethylphenol 1.1 1.1 0.7 6.4 7.2 12.3
52 C8H10O 108-68-9 3,5-Dimethylphenol 1.1 1.1 0.9 6.4 7.2 12.0
53 C8H10O 95-65-8 3,4-Dimethylphenol 1.1 1.1 0.9 6.4 7.2 12.0
54 C8H10O 576-26-1 2,6-Dimethylphenol 1.4 1.1 22.0 6.4 7.2 12.3
55 C8H10O 95-87-4 2,5-Dimethylphenol 1.1 1.1 0.7 6.4 7.2 12.3
56 C8H10O 526-75-0 2,3-Dimethylphenol 1.1 1.1 0.6 6.4 7.2 12.4
57 C9H12 103-65-1 n-Propylbenzene 0.9 0.9 0.9 6.0 6.0 0.4
58 C9H8O2 140-10-3 Cinnamic acid 1.0 1.0 2.7 7.4 8.2 10.5
59 C10H11NO2 102-01-2 Acetoacetanilide 0.9 0.7 24.1 6.1 7.2 18.3
60 C10H12O2 2315-68-6 n-Propyl benzoate 0.9 0.9 0.9 5.6 6.2 10.9
61 C10H14 104-51-8 n-Butylbenzene 0.8 0.8 2.1 5.8 5.6 3.7
62 C10H15N 91-66-7 N,N-Dimethylaniline 0.8 0.8 3.6 6.4 5.8 9.8
63 C10H18O4 111-20-6 Sebacic acid 0.8 0.9 13.6 6.0 6.3 5.2
64 C10H20O2 334-48-5 n-Decanoic acid 0.8 0.8 3.8 5.5 5.7 4.0
65 C10H24N2 4062-60-6 N,N’-Di-tert-Butylethylenediamine 0.7 0.7 5.9 4.9 5.2 6.7
66 C11H14O2 136-60-7 n-Butyl benzoate 0.8 0.8 3.2 5.4 5.7 5.4
67 C11H16 538-68-1 n-Pentylbenzene 0.8 0.8 5.1 5.5 5.2 4.9
68 C12H8O 132-64-9 Dibenzofuran 0.8 0.8 5.4 6.4 6.7 4.3
69 C12H26O 112-53-8 1-Dodecanol 0.6 0.7 13.8 5.1 4.8 6.1
70 C14H12 103-30-0 trans-Stilbene 0.7 0.5 26.3 5.3 5.6 6.6
71 C14H14 103-29-7 Bibenzyl 0.6 0.7 12.5 5.2 4.7 9.6
72 C14H30O 112-72-1 1-Tetradecanol 0.5 0.6 21.7 5.0 4.3 13.3
73 C16H34O 36653-82-4 1-Hexadecanol 0.5 0.6 11.1 5.0 4.0 19.6
74 C17H28 6742-54-7 n-Undecylbenzene 0.6 0.6 4.8 4.4 4.1 7.2



154 J.A. Lazzús / Thermochimica Acta 512 (2011) 150–156

Table 2 (Continued)

Prediction set no. LFLP (vol% in air) UFLP (vol% in air)

Formula CASN Substance exp calc �% exp calc �%

75 C17H36O 1454-85-9 1-Heptadecanol 0.4 0.4 8.2 5.0 3.9 22.2
76 C18H30 123-01-3 n-Dodecylbenzene 0.6 0.6 7.9 4.3 4.0 7.5
77 C18H32O2 57-11-4 Stearic acid 0.4 0.4 1.3 4.9 4.8 2.7
78 C18H38O 112-92-5 1-Octadecanol 0.4 0.5 28.2 5.0 3.8 24.6
79 C19H38O2 646-30-0 Nonadecanoic acid 0.4 0.4 9.7 4.9 4.9 0.7
80 C20H30O4 84-75-3 Di-n-Hexyl phthalate 0.4 0.5 12.7 3.5 3.5 1.2
81 C20H34 1459-10-5 n-Tetradecylbenzene 0.5 0.5 3.9 4.1 3.8 7.6
82 C20H42O 629-96-9 n-Eicosanol 0.4 0.5 19.6 5.0 4.6 8.5
83 C21H36 2131-18-2 n-Pentadecylbenzene 0.5 0.5 0.8 4.0 3.7 7.4
84 C22H34O4 3648-21-3 Di-n-Heptyl phthalate 0.4 0.4 1.7 3.2 3.2 0.2
85 C25H52 629-99-2 n-Pentacosane 0.3 0.3 10.1 3.3 3.3 0.0
86 C26H54 630-01-3 n-Hexacosane 0.3 0.3 5.3 3.3 3.2 2.4
87 C27H56 593-49-7 n-Heptacosane 0.3 0.3 6.9 3.2 3.1 1.8
88 C28H46O4 84-77-5 Di-n-Decyl phthalate 0.3 0.3 12.7 2.5 2.8 11.2
89 C28H58 630-02-4 n-Octacosane 0.3 0.3 3.0 3.2 3.1 4.1
90 C29H60 630-03-5 n-Nonacosane 0.3 0.4 25.3 3.1 3.0 3.4

Table 3
Overall minimum, maximum, and average deviations for the calculated flammability limits of all compounds using the proposed method.

Statistics LFLP (vol% in air) UFLP (vol% in air)

Training set Prediction set Total set Training set Prediction set Total set

No. of substances 328 90 418 328 90 418
�%min 0.0 0.0 0.0 0.0 0.0 0.0
�%max 26.1 28.2 28.2 26.8 27.8 27.8

264
25
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�%>20 17 8
AARD 8.6 8.5
R2 0.9876 0.9819

n the hidden layer, and two neurons in the output layer. For this
rchitecture the average deviation during training is 8.6% for LFLP
nd 7.0% for UFLP, and during prediction is 8.5% for LFLP and 7.5%
or UFLP.

The accuracy of the chosen final network was checked using the
verage absolute deviation (AARD) between the calculated value of
FLP and UFLP after training and the data from the literature. The
eviations were calculated as:

% =
∣∣∣ calc − exp

exp

∣∣∣100 (12)
ARDLFLP = 100
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N∑
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UFLPexp

∣∣∣∣
i
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4. Results and discussion

Table 2 shows the detail of the 90 substances used in the pre-
diction set and the deviations obtained. Table 3 shows the overall
minimum, maximum, and average deviations for all the substances
using the proposed ANN 42-6-2. The results show that the ANN can
be accurately trained and that the chosen architecture can estimate
LFLP and UFLP of organic compounds with enough accuracy. This
new method, gives lower deviations than others method yet avail-
able in the literature: AARD less than 8.6% for LFLP and 7.0% for UFLP
in the training step, and AARD less than 8.5% for LFLP and 7.5% for
UFLP in the prediction step.

Once the best architecture was determining, the optimum
weights required to carry out the estimate of flammability limits
of organic compounds, were obtained. Table 4 shows the optimum
weights and biases for the ANN 42-6-2.

Fig. 4 shows a comparison between experimental (solid line)
and calculated values of LFLP. In the training step (×) the correlation
coefficient (R2) was 0.9876, and during the prediction step (©) R2

was 0.9819. Fig. 5 shows a similar comparison for the calculated
values of UFLP. In this case, R2 was 0.9780 for the training set, and
R2 was 0.9771 for the prediction set.

Fig. 6 shows a comparison between several methods proposed in
the literature for prediction of LFLP for diverse organic compounds
[7–10], and the GCM + ANN + PSO model proposed in this work. As
see in this figure, Pan et al. [7] shows LFLP in a range of 0.1–2.3 vol%

in air, with �%max higher than 35%. Pan et al. [8] shows LFLP in a
range of 0.2–3.6 vol% in air, with AARD of 5.6% and �%max greater
than 60%. Gharagheizi [9] shows LFLP in a range of 0.1–4.3 vol% in
air, with AARD of 7.6% and �%max greater than 50%. Gharagheizi
method [10] shows LFLP in a range of 0.1–4.3 vol% in air, with
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Table 4
Optimum weights and biases of the model 42-6-2.

wji 1 2 3 4 5 6

1 0.1557 −0.0440 −5.6480 −1.3415 7.5607 −1.0829
2 −0.1541 −0.7115 0.0072 0.2745 0.0435 −0.0536
3 0.3991 −0.2208 −0.7054 −0.1312 0.9305 −0.3508
4 −2.6097 0.5296 −3.0392 0.0738 4.1433 −0.9456
5 2.0721 −0.3348 −2.4600 −0.1413 2.6844 −0.0275
6 −0.5279 −0.7798 −1.2530 −0.0054 1.3230 −0.0569
7 −0.8413 −0.4538 −0.0734 1.0779 −0.1129 −0.1745
8 3.1582 0.8776 −0.2432 −0.7556 0.4463 −0.0995
9 −0.9341 0.5735 0.0348 0.5624 −0.1691 0.0650
10 −3.6402 −0.0605 −0.2793 −0.1662 −0.1365 0.1953
11 −0.8294 −0.6220 0.2516 0.0011 −0.9245 0.1321
12 −1.0662 0.0191 0.5303 0.3406 −0.6100 0.0068
13 1.8597 0.1713 1.1153 −0.6923 −1.9963 0.4548
14 1.8981 0.0494 −1.3560 −1.1539 0.2328 0.6335
15 2.7299 1.8691 0.1056 −0.7002 −0.1582 −0.1024
16 −1.3606 −1.0969 0.8563 −0.3081 −1.4723 0.1072
17 −0.0961 0.5613 0.7458 −0.2403 −0.9773 0.2846
18 1.0590 −0.6046 1.5035 −0.2929 −2.2809 0.4568
19 0.3849 −0.0764 −0.3307 −0.3345 0.8193 0.2115
20 0.5278 −0.7928 2.0456 1.0196 −0.4295 −1.5149
21 0.3334 −0.1205 0.3177 −0.5472 −0.4567 0.2129
22 −0.4519 0.3912 0.0157 −0.1623 −0.2019 0.2198
23 −1.1981 0.3289 0.0183 −0.2924 −0.1208 0.1508
24 0.7382 0.3944 0.0735 −0.3245 −0.1256 0.2575
25 0.7707 −0.0753 0.8177 −0.8328 −1.0172 0.6240
26 −0.4737 −0.1443 0.6436 −0.0209 −0.8470 0.2505
27 4.9148 0.0903 1.6839 1.6860 −1.7196 −0.7024
28 0.8132 −1.9150 2.0325 1.0031 1.1603 0.3627
29 −1.6827 0.5317 0.1378 −0.7642 −0.3016 0.4213
30 −1.2851 −4.2418 0.6075 −0.7107 −1.0689 0.0113
31 −1.3052 1.4870 0.1834 −0.1898 −0.6631 −0.3225
32 0.9210 −0.7426 0.0474 0.6940 −1.9099 −0.3290
33 0.0084 0.2673 −1.9888 −0.0298 2.1500 −0.5692
34 0.9309 0.2156 0.1092 −0.2546 −0.3471 0.0320
35 −0.5351 0.3670 0.3479 0.0905 0.4843 −0.0072
36 1.5814 −1.9008 0.2511 0.7810 −0.2659 −0.1551
37 −0.0214 0.0160 1.3234 −0.4979 −0.2791 0.4417
38 −2.0619 1.3683 0.6107 0.1132 −0.8968 −0.1773
39 −2.3615 0.6794 0.0326 0.0616 −0.1173 0.1385
40 0.0887 −0.0334 0.5587 0.0755 −0.6613 −0.3212
41 −0.4365 0.9536 0.4781 0.4693 −0.7593 0.0626
42 0.0109 −0.7098 0.3728 −0.0286 −0.5141 −0.3929
b −1.3099 0.9280 −0.3684 −0.3846 1.6389 −1.2494
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Fig. 5. Comparison between experimental and calculated values of upper flamma-
bility limit percent in air: (×) during the training and (©) during the prediction.
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Fig. 7 shows a comparison between several QSPR methods pro-

osed in the literature to predict of UFLP of organic compounds
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ig. 4. Comparison between experimental and calculated values of lower flamma-
ility limit percent in air: (×) during the training and (©) during the prediction.
Fig. 6. Average absolute relative deviations found in the prediction of lower flamma-
bility limit percent in air using: (�) Pan et al. [7], (×) Pan et al. [8], (+) Gharagheizi
[9], (*) Gharagheizi [10], and (�) the GCM + ANN + PSO model proposed in this work.

[7,11,12], and the GCM + ANN + PSO model proposed in this work. As
see in this figure, Pan et al. [7] shows UFLP in a range of 3.0–16.5 vol%
in air, with�%max greater than 40%. QSPR method [11] shows UFLP
with AARD of 19.2% and �%max higher than 100% for a range of
2.7–40.3 vol% in air. Gharagheizi [12] shows UFLP with AARD of
9.6% and�%max higher than 30%, on a range of 2.3–23.5 vol% in air.
max

lower than 30%, for a range of 1.8–60.0 vol% in air.
Another comparison was made with a neural network with stan-

dard backpropagation (BPNN), and similars architecture (42-6-2)
and database. This BPNN show results of AARD of 15%, and�%max
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Fig. 7. Average absolute relative deviations found in the prediction of upper
flammability limit percent in air using: (�) Pan et al. [7], (+) Pan et al. [11], (*)
Gharagheizi [12], and (�) the GCM + ANN + PSO model proposed in this work.
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reater than 80%. Fig. 8 shows of the deviations found in the pre-
iction of flammability limit temperatures (LFLT and ULFT) using
he BPNN and the proposed model. The low deviations found with
he proposed GCM + ANN + PSO model, indicate that can estimate
FLP and ULFP of organic compounds with better accuracy than
ther methods available in the literature. These results represent
tremendous increase in the accuracy to predict these important

hermal properties.

. Conclusions

In this work, the lower and upper flammability limits percentage
n air of organic compounds have been estimated using a sim-
le group contribution method implemented in an artificial neural
etwork replacing standard back-propagation algorithm with an
article swarm algorithm.
Based on the results and discussion presented in this study,
he following main conclusions are obtained: (i) The great differ-
nces in structure chemical and physical properties of the organic
ompounds considered in the study impose additional difficul-
ies to the problem that the proposed method has been able to

[
[
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handle; (ii) The results show that the ANN + PSO can be properly
trained and that the chosen architecture (42-6-2) can estimate
the flammability limits percentage of organic compounds; (iii)
The low deviations found with the proposed GCM + ANN + PSO
model indicate that can estimate flammability limit percentage
in air with better accuracy than others method available in the
literature.
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